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Abstract—For a linear eclastic structure, the first variation of an arbitrary stress, strain and
displacement functionals corresponding to variation of shape of externa! boundaries or interfaces
is derived by using the solutions for primary and adjoint systems. The application to optimal design
is next presented and the relevant optimality conditions are derived from general expressions. The
path-independent integrals used in fracture mechanics are rederived as a particular case of general
expressions.

1. INTRODUCTION

The present paper constitutes the continuation of previous work (Part 1, [1]) on variational
approach to sensitivity analysis with respect to design functions varying within a specified
domain.The first variations of any stress, strain or displacement functionals were explicitly
expressed in terms of variations of design functions. Now, a more difficult problem will
be considered when external boundaries of the structure or interfaces are allowed to vary.
The respective variations of the considered functionals will be expressed in terms of the
variation of a transformation field specifying the shape modification. In particular, the
variation of the potential and complementary energies will be considered. When the
transformation field corresponds to translation or rotation of the boundary, the potential
energy variation is identical to that derived previously by Eshelby[8], Knowles and
Sternberg[9], Budiansky and Rice[10] and Bui[ll]. The application of the derived
expressions to optimal design problems will next be considered. In Section 2, the virtual
displacement and stress equations will be derived, whereas in Section 3 the variation of
the potential and complementary energies will be considered. In Section 4, the variation
of an arbitrary stress, strain and displacement functionals will be discussed and in Section
5 the stationarity conditions for some optimal shape design problems will be derived.
However, the significance of the obtained results is much broader as they can be applied
in fracture mechanics or in studying growth of biological structures or metallurgical
transformations. Some simple illustrative examples are presented in Section 6. The results
previously obtained in [2-5] for optimal shape design are incorporated in a much broader
context. A variational approach to optimal shape design was also discussed in [6, 7] and
in books [13, 14].

2. VIRTUAL DISPLACEMENT AND STRESS EQUATIONS FOR STRUCTURES WITH
VARYING LOADED, FREE, SUPPORTED AND INTERNAL BOUNDARIES

Consider now an elastic body B occupying the domain J with the boundary S. The
surface tractions T° = ¢ - n are specified on S, displacements u = u® on S,. Under applied
loads, the body passes from its initial configuration C to a deformed configuration C,
specified by the displacement field u, x*= x + u. Besides a deformation process C—C,
consider a transformation process C —+C,, X' = x + ¢ with the imposed transformation field
¢(x) specified within ¥, Fig. 1. Obviously, this transformation field modifies shape of
external boundaries or internal interfaces between different materials. The major question
S8 Vol. 20, No. 6—A 527
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Fig. 1. (a) Transformation and deformation process of the body, (b) Primary structure of varying
shape, {c) Adjoint structure for stress functional.

can now be posed as how stress, strain, displacement or some global functionals are
modified due to transformation of a structure. In analysing this problem, an important
constraint is imposed on the transformation field namely, the variation of a particular
boundary portion, say Sy or §,, is assumed as not affecting the remaining boundary
portions. Thus, the variation of each boundary part or interface can be treated separately.
This restriction limits the class of shape variations since in actuality the shape modification
may occur with simultaneous variation of all portions of the boundary with interaction
effects occuring on the lines separating these portions. Such coupled boundary variation will
be treated in a subsequent paper and here only non-coupled variations of particular
portions will be considered. It is further assumed that @(x) is a continuous and
differentiable field.

The analysis will be confined to small displacement and strain theory. Assume stress
o(x), strain ¢(x) and displacement u(x) within the body (referred to a Cartesian reference
frame) to satisfy equilibrium, compatibility and boundary conditions. Let the reference
configuration correspond to a given transformation field ¢@(x). Consider next the
infinitesimal transformation d¢(x) of the structure and the associated variations de (x),
de(x) and du(x). In this Section the modified forms of virtual displacement and stress
equations will be derived and next applied in derivation of the functional variation,

2.1 Virtual displacement equation
Consider a simultaneous variation of the displacement and transformation fields. If x*
denotes the position of a point P, initially placed at x, after infinitesimal variation of ¢,
we can write, Fig. 2(a),
uX(x*) = u{x) + ou/x), 4))
P—-P* x¥=x+6¢p, @
where d¢ is a differentiable field. From (1) and (2), it follows that
Ou; = uM(x*) — ufX) = dil; + U by, 3)
where comma preceding an index denotes partial differentiation. Here 8, = uf(x) — u(x)

denotes the displacement variation for a fixed configuration of the body. Assume first that
the boundary portion S, is not altered and then we have du;= i, =0 on §,.
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Fig. 2. Variation of displacement (a) and stress (b) fields due to boundary shape variation.
The variation of strain is expressed similarly as follows
56,:,' = af-,j + Cy'kalpka ég(x‘) = Cy(x) + 66,:,' (4)

Consider now the static continuation of the stress and body force fields beyond the domain
V, Fig. 2(b), namely

o ¥(x*) = 6(x) + 0, 00,(x),

SHX*) = (%) + [ mad@u(X). ®
Such stress field satisfies the equilibrium conditions beyond the boundary §, thus
oy + /1 =0+ 0o + 1+ fude. = 0. ©)
The loaded boundary Sy is transformed into S¥ and
THx*) = o (x*)n}, ™

where n* is the unit normal vector to §%. For the transformed configuration V*, there is
Jo'}}‘e,’; dV* = JT,“‘u}’ ds,+ J‘T,«‘u,? dSt+ J SfrurdV*. 8)

Let us now transform the integration within ¥'* and over S} to integration within ¥ and
over Sy. Since the following transformation rules occur, see Appendix A,

dV* = (1 + d¢.,) dV,
n}dS* = (1, + nS@e — nb9,,) dS,
om=n} — ;= npund Qe — MY, 9)
0(dS) = (3@sx — nd@s,) dS, )

where n denotes the unit normal vector to Sy, eqn (8) can be presented in the form

J‘(Gy + Ug,k6¢g)(€y + 55}; + cﬁ,kéqo;,)(l -+ 6@*,*) dV =
i} f Tu? ds, + f (04 + OB @O+ 85 + i) (10)

X (14 nB@yy — Mmoo, ) dSr+ j‘(f; + ford@ ) + 06+ u ) (1 + dy,) dV.
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Since for the untransformed configuration, there is

J.a,-,ci,-dV=fﬂu,“dS,+JE“u,dSr+fﬁu,dV, a1

after subtracting (11) from (10), one obtains the virtual displacement equation

J 0,06;dV = J?}"éﬂ,— dS,+ J.ﬁéﬁi dv + j{(aﬁétpj — o, dpu)n dSr. 12)

Applying the Stoke’s theorem to the last integral of (12), it can be reduced to the
curvilinear integral along the curve bounding the surface.portion S; on S, thus

f 6,58,dV = J' T, dS; + j fou,dv — §eﬁ,a§,u,~:{5¢f dr, (13)

where +,” is the unit vector tangential to I', 69, is the transformation variation on I'" and
e;, is the permutation symbol. However, when 8¢, = 0 on T', the last term of (13) vanishes
and there is '

Jo~5€dV=fF-6ﬁdSr+ j'f'éﬁdV, (14)

where the dot between two tensors or vectors denotes summation with respect to their
indices.
This form of the virtual displacement equation will be used in subsequent analysis.

2.2 Virtual stress equation

Consider now the simultaneous variation of the stress, body force and transformation
fields. Simultaneously as previously, we can write

o }(x*) = 0(x) + 36,{X) = 0,{X) + 66 (X) + 6,,(X)d;,
SFHX*) = f(x) + 0fi(x) = fUx) + 8(X) + fu(X)00s, (15)

where 36; = o ¥(x) — 5,(x) and Of, = f¥(x) — f{x) are the stress and body force variations
for the fixed configuration of the body. Since the stress o} is statically admissible, thus

or+fr =0+ 06+ 0,00, + i+ Of +£.:00, =0, (16)
and
0G,;+ 6f;=0 within V. amn
Continuing analytically the displacement and strain fields from ¥ to V'*, we can write
uF(x*) = u(x) + U, (x)00s,
(18)
€1(x*) = €(X) + €;(x)0 .

Substituting (15)(18) into (8), retransforming to the initial domain ¥ and subtracting (11),
the virtual stress equation takes the form

J-éé,-je‘-j dv = J‘éfiu,» av + I&Ty}‘ das, + J&&ng, dS,— §eﬂagu,l[ dpfdr. (19)

Let us note that for ¢, =0 on TI', the last term of (19) vanishes.
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Consider now the variation of surface tractions on the boundary portion S;. Denoting
the total variation of these tractions by 6T°, we can write

0T = THx*) — TX(x) = da,0n,+ o,0n, (20)
and in view of (15) and the third equality of (9), we obtain from (20)

06 = 6T — T'mndp, — 0,109, + 6,2,00,,. (21

Using now (21) in (19), the virtual stress equations can be presented as follows

J\éégede-—-f&f,u,dV+f5Tm?dS,+J[a,,u,(§,,

~ RAIDO Py — O yitit dPy] AS7 + Jlé T u;dSy, (22)

where 6; denotes the Kronecker’s symbol.

Let now the surface S; be parametrized by an orthogonal curvilinear system «, §
coinciding with the principal curvature lines on Sy and let a,, b, denote the unit vectors
tangential to « and §. The transformation components in the coordinate system «, B, »
are now expressed as follows

00, = a,dp,, Op,=bidp,, 06¢,=nde,, (23)

and since for any continuous and differentiable function f(x) on S, there is

1 1
Su= ;!ffwak + "éf’ﬂbk + foalhio (24)

where 42 and B? are the coefficients of the first quadratic form on Sy, eqn (22) can be
presented in the form

j' o6, dV = J' 6T dS, + J‘ 0T u, dSr + J‘ & dV + [f#ﬁ&afh dsy
+ J'{[( Tou),, — 2Ti°“tH - o'yey]"k - Tiouut}&Pk dSr

1
+ j[(?'.-"uiBak&h),, + (T uAbdo,), =5 957 25)
where H denotes the mean surface curvature on Sy, satisfying the equality
1
2Hn, = 1B [(Baw),a + (Aby),g). (26)

Since the variations 8¢, vanish on the curve I" bounding the surface portion Sy undergoing
transformation, then the last integral of (25) vanishes and the virtual stress equation is
alternatively expressed as follows

J‘Ja' -ch——-Jé T-u“dS,,+J&’I"-udST+féf-udV+J.{[m'll)m+f-n

—2T°-uH ~ o - €ln, — T}, - u}éep, dSy. @en



532 K. DeMs and Z. MROZ

Let us note that the eqns (22) and (27) are valid for both conservative and non-conservative
loading.

In particular, when d¢, = 0 on S, and the boundary variation occurs only on the free
boundary portion S, where T° =0, eqn (27) becomes

jé& -cdV=jéT'u°dSu+J5T'udV—j(a € —f-u)de,dS,. (28)

Introducing a local Cartesian system y, on S, with the axis y; normal to S, and the axes
Vi ¥, lying in the plane tangential to §,, eqn (28) can be presented in an alternative form

f&&-e dV:f&T'u°dS.+jéi'-udV—.“(ouek,—-f-u)éqo,.dso, 29)

where o, and ¢, (k, [ = 1, 2) are “internal” stress and strain components referred to the
axes lying within the tangent plane to S,

2.3 Transformation of the supported boundary S,

Consider now the case when the transformation field modifies the boundary S, on
which the displacement vector u=u’ is specified. Since now, see eqn (3),
du=3dia+u,d¢p, =0 on S, the virtual displacement equation takes the form

Ja-6EdV=Jf-6ﬁdV+JW-6udST—JT-u,,‘écpkds,,, (30)

provided the boundary variation vanishes on the curve I' separating S, from other
boundary portions. On the other hand, the virtual stress equation is identical to (22) or
(27), that is

f&&-cdV=j&?-udV—kIé’l‘m"d&,-{-I{{(T-h),,,—ZT-u"H

+f-u—o '(}nk—~T,k°uG}5(9dew (31)

For the case of rigidly supported boundary, that is u’=0 on S,, eqn (30) is reduced to
the form

f«r&e’dV:jf -éﬁdV+J'T"-éﬁdST-—me,,,&cp,,dS,, (32)
whereas the virtual stress equation (31) takes the form
jéé 'cdyzj-éf-udv. 33)

We have thus discussed consecutively the variation of each external boundary portion,
assuming that there is no interaction between variations of these portions. As mentioned
previously, the case of coupled shape variations will be treated separately.

2.4 Transformations of the interface S,

Consider now a two-phase body composed of two materials occupying subdomains ¥,
and ¥, and separated by the interface S, that is ¥V = V,UV,, Fig. 1(b). Assume the
transformation field to modify only S, whereas the external boundary remains unchanged,
thus d¢ =0 on S.

Since the stiffness moduli vary discontinuously on S,, the displacements u = u‘ and the
surface tractions T°=o°-n° are continuous, but their gradients and stress components
exhibit discontinuities. Denoting by [ ] the discontinuity of the enclosed quantity on S,
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calculated as a difference of respective valucs in the domains ¥, and V,, we have
=0,  [T]=[d]m
[ui] = [l [T5d = [To)ne.

Let f,, 6,, €, u, and f,, 6,, ¢,, 4, be body forces, stress, strain and displacement fields within
¥V, and V,. The virtual displacement equation for the field @ now takes the form

(34)

Jd’g ’(SE;(.{V; + JO’;‘(SEzle: J‘ft '563 dVg +J.f2' 6ﬁde2

+ J 'I"*&ﬁds,-+j"l“-[§ﬁ‘]} ds.. (35)
Since [du°] is continuous on S,, we have

[6u] = [6u] + [us,]o0, = 0. (36)
Substituting (36) into (35), we obtain

jﬂg N 52} dV; + j'ﬁg * 5{2 de = J.f; . 6‘3; dVI + jfz ¢ 553 de

+ J‘To 1) dS;v-"' J.T‘ . E“:,.Ba‘pn dsﬂ (37)

provided ¢ = 0 on the curve I' lying on the boundary surface S. The derivation of virtual
stress equation follows similar lines. In fact, we may write

‘;.563 c€ dV, + J&&z i 3 de = j-(S?; Wy dV‘ + }‘5?2 ‘W de

+ j oT-vdS, + | v -[66] -nds, (38)
and since 8T is continuous on S, thus

[6T]=[o] on +[60] v =[o] 60 +[66] - n° + [0, )00, -0 =0, 39

and in view of (9), there is
[66,]n7 = [o,]nc001; — [osm]n/d0:. (40)

Substituting (40) into (38), it follows that virtual stress equation takes the form

fﬁ, ‘63 dVl +.f652'€2d,/2=ja?, '“'dVI ‘*’j&?z'“;dyz

+ J\ ST -udS, + J([[aﬂu,-‘n{éq;k,, — [oyuluinsdep) dS., 4n

or alternatively by applying the Stoke’s theorem, it is obtained for d¢ =0 on I

fﬁi. '€ dV| + J.aaz' € dV2= J‘é'fl i dV] + f&rz ' “2dV2

+ f 5T w0 ds, + [(Eryu—-ﬁauaez,m ds,, 42)
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where g, and ¢, denote the ‘internal’ stress and strain components referred to the
coordinate axes lying in the plane tangential to S. A more detailed discussion of the
interface variation is presented in[4].

We have thus discussed consecutively the virtual equations for the variation of each
boundary portion. These equations will be now used in the subsequent analysis.

3. YARIATION OF POTENTIAL AND COMPLEMENTARY ENERGIES ASSOCIATED
WITH BOUNDARY VARIATION

3.1 General case

In this Section, we shall apply the virtual displacement and stress equations in order
to derive the first variations of the potential and complementary energies corresponding
to transformation of the external boundary or the interface of a structure. Such variations
can next be used in deriving the optimality conditions for an optimal design with specified
global elastic compliance.

Consider the potential energy

H“(u,f,ﬂ,cp):J‘U(c)dV-J'f-udV-J.T"'ildSﬁ 43)

where U(e) denotes the specific strain energy per unit volume. Qur analysis in this Section
will be referred to both linear and non-linear elastic materials. The first variation of I,
equals

617,,=j%¥ -6€dV—Jf~ 5|'|dV+j(U(c)—f-u)&p,,dS,—-—éjT“-udST, (44)
and since
6[1“’-udS,=f6’l°~udS1+JT°-6udST+j'l’“-ué(dsr), (45)
in view of (9) and using the virtual displacement equation (14), we obtain
ol = j{[( U—f-wm,— T 0,00, — T Wby — m#)d¢y,} dSr — J‘w -udS, (46)
or in an alternative form
oI, = J‘{[U —f-u—(T° u),, + 2T° - uH]n, + T}, - u}d¢p, dS; — Jé'l"’ ‘udS;, @7

where it was assumed that d¢ = 0 on the curve I" bounding the varying portion of the
boundary Sy

Assume first that the surface loading is conservative and does not depend on the surface
configuration, but may vary with a position. Then §T° = T, d¢, and (47) becomes

81, = J‘[U ~f-u—(T°u),,+ 2T°- uH)é¢p, dS . (48)

As an example of a non-conservative loading, consider the pressure loading
T =p(x)n 49)
directed along the normal to the surface. In view of (9), there is

OT? = p(X)n; + p(x)on; = pundp, + p(nbdQ,., — mdo,.), (50)
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and the variation 817, is expressed in the form

6n,=J‘[U—f-u—div (pu)léep,dSr. (51)
Consider now the complementary energy

1 (e, T,¢)=JW(¢)dV—jT-u°dS,, (52)

where W(e) denotes the specific stress energy per unit material volume. The first variation
of 11, equals

oI, = J‘ ‘;—;V .66 dV + -[ Wn,d9, dS;— fa'r -uds,, (53)

and in view of the virtual stress equation (22), in which it is now assumed that there is
no local variation of body forces, it follows that

o, = I[( Wn, — 0,,un )o@, + o,uld; — np)nde,,] dSr+ J&'I" -udSp (54)
or alternatively
6H,=J{[W+('l"-u),,,—2T°'uH+l'-u—a -e]nk—T‘,’,,-u}6<p,,dS,+J.6'l°-udST. (55)
In particular, for a loading independent of surface configuration, (55) provides
<SI7,=J‘[W+(T°~u),,,-21"-uH+f-u—a-e]&p,,dS,, (56)
whereas in the case of pressure loading (49), there is
6H,=j[W+f-u—a - € + div (pu))de, dSr. 57

When only free boundary S, is subject to variation, and there are no body forces, the
derived expressions for first variations are considerably simplified. In fact from (47) and
(55) it follows that after setting T° =0, f =0 one obtains

o, = IU&(p,, ds,, oIl,= J(W -6 -€)dp,dS, = —-."Ué(p,, ds,. (58)

Thus, the potential energy of a structure increases and the complementary energy decreases
by moving the free boundary in the exterior, that is by adding the material to a structure.

When, on the other hand, only supported boundary S, is modified, the first variations
of (43) and (52), in view of (30) and (31), take the form

11, = f (U —£- un— T - u,log, S, (59)

and

6H,=J.[(W+f-u—c-c)nk+T-u,,‘]6<p,,dS,,. (60)
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For the variation of the interface S,, in view of (37) and (42), we obtain

617..=J(EUTB-§*‘}I'u‘-'l“-t{ui.}bﬁwd&, (61)
and
5", = J-(l[ W]] -+ [f]] - [ﬂu]]fil)‘s% dscv (62)

where o,; and ¢, denote the ‘internal’ stress and strain components within the plane
tangential to S,. The relation (61) was earlier derived in a different way by Eshelby[8] for
the case of translation of the interface.

3.2 Translation and rotation of the boundary

Consider now the body bounded by a surface S, on which the fixed surface tractions
T are prescribed. Assume, for simplicity, that the body forces are neglected and consider
two particular cases of shape transformation, namely (i) translation and (ii) rotation of

the body with external forces T° being respectively translated and rotated.
In the case of translation of the boundary by a vector da, it can be written

8¢(x) = da, = const.

5T = 0 for xe S, (63)

and from (46) and (54) we obtain the variation of II, and J1,, expressed as follows
&N, = f(b’uk —T° u,)dS;dq, = j(Uéﬁ = Gy dSroa, (64)
and
8, = j(Wnk — o) dSrda, = j‘ (W, — o u)n; dSrda,. (65)

On the other hand, when the body is rotated around a point R by the infinitesimal rotation
vector de, the variations of point positions on Sy and their spatial derivatives are

5(0,-(X) = ejklxﬁwb
(66)
80, = €x 0,00, = e, 00,

Similarly, the variation of surface traction due to rotation of the traction vector takes the
form

67}0 = e,*,ﬂoéwk. (67)
Substituting (66) and (67) into (46) and (54), we obtain

oI, = Jeﬁ,{(Unj =T u)x,— T u(é; — np)] dSrdw;

- Ieﬁ,ﬂouj dST(swk = fe’-k;(UXﬂj -+ T}Ou, - T"o“;,jxl) dSréwk. (68)
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and

o, = J' eu(Wn; — o) x; + 0,0, — nn] dSréw, + J‘ 5T u; S0,

= Jeﬁ,[ Wxp, — (0,1 + 65,050, + O] dS70w,. (69)

Let us note that the conservation laws formulated by Eshelby(8], Knowles and
Sternberg([9] and Bui[11] can be derived from these expressions. Namely, considering the
invariance of 7, under translation and rotation of the domain of a homogeneous and
isotropic body, we can write

811, =0. (70)

In view of (64), the Eshelby conservation law for a homogeneous body takes the form
Jp= j (Udy — o) dS = 0. W)

In the case of rotation (66), from (68) we obtain for an isotropic body
L= feﬁ,(Uxm, + T uy— TPu,x) dS =0, (72)

which is equivalent with that derived by Knowles and Sternberg[9]. Similarly, considering
the stress energy, we arrive at the conservation law for a homogeneous body considered
by Bui[il]

Bk = J‘( Waﬁ — a'y,kul)nj ds = 0- (73)

Let us note that S can now be identified with any closed surface within the body, in
particular with the boundary surface S;.

4. VARIATION OF ARBITRARY STRESS, STRAIN OR DISPLACEMENT AND
TRACTION FUNCTIONALS ASSOCIATED WITH BOUNDARY VARIATION
In this Section, we shall derive the expressions for first variations of the functionals
G, and G, defined in Part I[1], corresponding to variations of the boundaries Sy, S, S,
and S.. Similarly as in Section 2, let us denote the total variations of stress, strain and
displacement by d¢, d¢ and du, whereas the variations for fixed configuration are
respectively 4, o€ and dil.

4.1 General case
Similarly as in[1}, consider the functional

G, =J-‘I’(a)dV+Jh(u)dV+Jf('l‘) dS.+.[g(u) ds,, 74)
and its first variation associated with the variation of the loaded boundary S,
¥y . oh .
561 = '5; -é6 dV + J'?ﬁgaﬂk dSr+ J.gﬁ -dadV + fhﬁ*é?g ds;-

of og .. O
-+ ‘[ﬁ 0T dS,, + J.[’é'g“‘ <di+ ‘é‘f’l . u,,éfpk -+ g(5¢, bl n,,n,)é(pk,,] dSr. (75)
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Following[1], consider now the adjoint structure of the same shape but satisfying the
boundary conditions

dg of dh . .
W e 90 e @ s e
T F on Sy, u 7T onS, f F within V {76)

and with the imposed initial strain field €' specified by
L
L i V.
€ % within an

Denoting the stress within the adjoint structure by o’, its total strain field ¢ can be
presented as a sum

e“=¢+¢, (78)

and it is compatible with the displacement field u®. The stress field ¢ is related to €’ by
Hooke’s law, ¢’ =D - ¢’, and satisfies both equilibrium and boundary conditions

dive'+f°=0 within ¥, ¢ -n=T%on S, (79)
We therefore can write
oY . - .
J‘&—-6¢rdV==fe"~6adV—J'c’-6adV, (80)
and since
Jc“éédeJc“Ddideja’-&"dV—-—J’IW-éi’zdSr+j‘f"-6idV, 1))

in view of the virtual stress equation (22), in which it is assumed that there is no local
variation of body forces, we obtain

%g - 86 dV=f&T-u"“dS,,+f6'I‘°-u‘dS7+f[a;,u{‘-—ngzj)nkétpk,,

~ Oy "nop, ] d Sy — J T%-dadS,— J‘f‘ -dadV, (82)
and the first variation of G, is expressed as follows
66, = féTo -u'dSr+ I{{(tp + )+ (ﬂ;ﬂ;,* - 0@,&“;‘)&1]6¢*

+ [ou(0y — np)n, + g8y — mn))o@,.} dSr. (83)

The alternative form of the first variation of G|, in view of stress equation (27), can be
expressed as follows

563$faw'fd8?+f{{w +h+g,+ (T u),— 2 +T° w)H

-~ € +1 u‘]nk - T?k : u‘}éqo,, dSr. (84)

When only free boundary S, is subject to variation and there are no body forces, assuming
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g(w) =0 and /i(u) = 0, the cxpression (84) becomes

4G, = J(‘P — 000, dS,, (85)

where o, and ¢f, denote the ‘internal’ stress and strain components of primary and adjoint
structures within the plane tangential to S,.

For the case of supported boundary variation, with S; fixed, the first variation of G,
in view of (30) and (31), takes the form

5G,=J{[?’ +h+f ot (T u%),=2(f+T u)H -0 ¢

+ f- u“°]nk + Te- u,k}5¢k dS,,, (86)

where static and kinematic fields accompanied with the adjoint structure satisfy once again
the conditions (76)—(79). Consider now the functional

G2=.[¢(e)dV+Ih(u)dV+‘(.f(T)dS,,+j'g(u)dST, 37

and its first variation, expressed as follows

acz=j%_f -sEdV + f o0, dSr+J%'5ﬁdV+JMk5¢k dSz

2 og . D
+ I % .6TdS, + '[[5% S+ 'a% 0,00, + g0y — nkn,)é(p,‘,,] ds,  (88)

Following[1], let us introduce the adjoint structure satisfying the boundary conditions (76)
and with the imposed initial stress field

a"=a—f within V. 89)

Thus, we obtain

f%-5edV=fa~-ade-j1“v-6ﬁdSr—Jf"5"'dV, (90)

and in view of stress equation (22), in which it is again assumed that there is no local
variation of body forces, there is

J.c"-éc‘dV=J‘a"-E-6&dV=J‘e'~66dV=I&T-u“ds.

+ j&To -0 dSr+ J[a (04 — npInOPy, — Gyunde,] dSy, 7))

where ¢ and T are the stress and traction fields of the primary structure whereas u? and
€* denote the displacement and strain fields of the adjoint structure. The variation 6G, is
now expressed in the form

0G, = jé'l" -uw'dSr+ I{[(‘b + h)ny + (0 [l — Ot INJOQ,

+ [o,u4°(84 — nn)my + g (O — myn)100,,;} dSr, 92)
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or in an alternative form

5Gz=J5P'ﬂ”dSr+j{[¢+h + g+ (T 0%, ~2(g + T u)H

-0+ f “d}nk - 'I‘g)k * “a}é(p* dST. (93)

In particular, when g(u) =0, A(u) = 0, there are no body forces and only free boundary
S, is subject to variation, the expression (93) becomes

8G, = f (@ — o - €950, dSp. 94)

For the case of supported boundary variation, with S; fixed, the first variation of G, in
view of (30) and (31), equals

0G, = f{[d) +h+fin+ (T u®),—2(f+ T u)H — 0+ f-u“n,

+ i “,k} (s(pg dSw (95)

Consider finally the case when only the interface S, undergoes the variation. Consider the
functional

G = J‘I’,(o‘,) dav, + J.'f'z(ﬂz) dv,+ fh,(u) dv, + fhz(u) dv,

+ Jf (Mds, + J.g(ﬂ) dSr, (96)

where ¥, and ¥,, h, and h, are continuous and differentiable functions of stress and
displacement within the domains V| and V, separated by the interface S.. The variation
of G, equals

¥ oh
56, =J?_§’_*-aa,dv,+J%;:-aazdvz+jﬁw]5¢,ds,+jgiaadv,
H

ohy . of g .
+J-ﬁ 5udV2+J[h]6¢,dSc+jﬁ 6TdS,,+J‘a 5adS;. @7

Introducing the adjoint structure, satisfying the boundary conditions

og of
T"°-5§ on Sy, u*= ~5 on S, (98)
and
ohy ... oh, ...
fif= —é—é within V,, = :3—62- within V,, (99)
and with the initial strain fields
0¥, .. oY, ...
c,'=-—a-a‘- within ¥, ‘2‘3'5;;2 within ¥,, (100)
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the displacement field u® and the stress field " of this structure satisfy the conditions
[wr]=0, [T]=[¢] n=0 onsS. (101
Following similarly as previously, we can write

o,
0o,

oY,

'56.dV;+J3;;

'652dV2=JEli'6aldV|+ £{'5¢’2de
== JG;“ . 55; dV; + J"; . 66; de - jd’{ ‘ 632 dV; - 62’ . 56—2(1112
= J'(sT . u"dSs - J'T“o - o dSr"" [('rr - Eu,,,ﬂ - {Gﬂﬂﬁ‘b

+[[f]|-u‘)6¢,d8,~jf,°'6ii dv, —J'f,“-él'ldV,, (102)

where the virtual strain equation (37) and stress equation (42) were used. The variation
of G, can now be expressed as follows

5G, = j @(¥]+ [+ T[] - [oudet+ [1] w60, ds, (103)

provided d¢,=0 on the curve I of intersection of the interface S, with the exterior
boundary.

Considering alternatively the functional

Gz = f¢‘(€‘) d Vl + J'¢2(€2) de + Jh,(u) d V;

+ f h)dV; + f x(u)dSr+Jfﬂ) dS.,, (104)

its variation is expressed similarly to (103), that is

5G, = f 6]+ [+ T[] - [oudets+ [£] - w0, ds.. (105)

Here T’ is the continuous contact traction at the interface S, of the adjoint structure
whereas ¢, are the “internal” components of the strain field ¢ of this structure. The
associated quantities of the primary structure are the discontinuities in displacement
gradient u,, and in “internal” stress components o,

It can easily be shown that when G, and G, coincide with the complementary and
potential energies, the derived expressions for variations of G; and G, coincide with those
derived in the previous section for variations of I1, and II,.

4.2 Translation and rotation of the boundary

The general expressions for variations of G, and G, can now be particularized to the
case of translation and rotation of the boundary.

When 8¢, = dq, = const. that is when the translation occurs, the general expression (83)
takes the form

G, = J‘ ST u dS,+ f (¥ + h)m, + (@t — O pts®In] dSyday, (106)
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and similar expression for the variation of G,, namely

6G, = fé'!*’ ‘wdSr+ f[(‘p + R + (0 [, — 0uiIn] dSréa,. (107)

When the variation 3 T° associated with boundary translation vanishes, and G, coincides
with the complementary energy, then ¥ = W, T*=¢"-n =0, u* = u. Moreover, setting
h =g =0, from (106), we obtain

G, =411, = f( Wiy — 6,un) dSréa,, (108)

that is the relation (65). When on the other hand G, coincides with the potential energy,
then d=U, T*=06""n= —T° u* =0, and setting & = f =0, from (107), we obtain

0G, =011, = J (Un, — T - u,) dSrday, (109)

that-is the relation (64).
Similarly in the case of rotation of a closed boundary Sy, d¢; = eyxdw), the respective
expressions for 4G, and 4G, are

JGI = JéTo -u dST'I‘ Jekﬂ{[(W + h)nk -+ (a,f,ui,k - U,p,kuia)np]x' <+ Uuuinﬂk} dS,éw,-, (l 10)

and
5(}'2 = JAts'Io 'y dSy- + J‘ekﬂ{[((p + hn, + (0;’;“:"&

— Ot I)x, + oufn} dSréw,. (111)

When the variation 6 T° associated with boundary rotation is defined by eqn (67), again
the formula (69) is obtained when ¥ = W, T*=0, u>’=uand h =g =0.

However, considering the expressions (106), (107) or (110), (111), a new class of
conservation laws is generated. Consider, for example, the case of translation. Setting
3T =0, h = f =0, and considering integral on any closed surface S within the body, from
(106), we obtain for a homogeneous body (cf. Appendix B)

Zr = J(W‘sk] + Gau,-,k — ij,ku‘”)nj dST = 0. (1 12)

The similar expression can be obtained from (107). These new conservation laws obviously
generalize those derived in[8, 9, 11]. Their proof and application will be discussed in a
separate paper.

5. STATIONARITY CONDITIONS IN OPTIMAL SHAPE DESIGN

In order to illustrate the applicability of derived expressions for first variations of
functionals G, and G,, let us discuss the optimal shape design. Assume the cost of the
structure proportional to the material volume, thus

o =cIdV, oC = c[n,ﬁqo,, ds, (113)

where c is a constant parameter. The problem is then reduced to minimizing or maximizing
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the objective functional G with a specified upper bound on the structure cost, thus

min. or max. of G subject to C < C,. (114)

Introducing the functional
G’ =G +A(C -Gy, (115)

where 4 is the Langrange multiplier, the condition of stationarity of G’ is expressed as
follows

G’ = 6G + 46C + 6A(C — C;) =0, (116)
and
6G = —A8C, SA(C—Cy)=0. 17

The second equality requires either C = C, or 64 = 0. The first condition can be expressed
explicitly by using the respective expression for variation of G and (113).

In particular, when G = G, and G, is defined by (74), the optimality condition (116)
is expressed as follows

J‘61"-u‘dS,+J.{['I’ +h+g,+M u),, -2 +T vw)H -0 ¢

+ f- II‘]n,, - 'I‘;)k : “a}é(pk dST =—=Ac J”k6¢k dST, (l ]8)

where the expression (84) for 6G, was used. When, in particular, G, coincides with the
complementary energy II,, then ¥ (o) = W(o) and in view of (55), we have

‘[{[W+(T°'u),,—2T°'IIH—a' "+f'u]nk—'l?k'“}6(pdeT

+J6v'ud81= ‘lCJ‘nk6¢deT. (]19)

In the case of free boundary variation (T°=0) in the absence of body forces and with
h(u) = 0 within V, g(u) =0 on S,, from (85) it follows that

J-('P —0 €Y, dS;= —Ac J.étp,, ds,, (120)

and the local optimality condition is
6 -¢"— ¥ =Jc =const. on S, (121)

Finally, when only supported boundary S, is subject to variation, the optimality conditions
for the objective functional (74), in view of (86), are expressed as follows

f{[w th+fo+ (T u),—20+T w)H —a € +1 uvn,

+7T° “!k}5¢k dS,, = —AC J.nk5¢,, dS,,. (122)

SS Vol. 20, No. 6—B
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Similarly, the optimality conditions can easily be stated for the objective functional G,
expressed by (87). In fact, using (93) and (113), the optimality conditions for the loaded
boundary variation are

J{PP +h+gnt+ (T w),—2g+T u)H —0 ¢+ wn,— T, u'}éo, dS;

+f51°-uads,= —ch.nk&pdeT, (123)

and for the variation of free boundary, in the absence of body forces and with 4(u) =0
within V, g(u) =0 on S,, the local optimality condition is

0 €’— @ = ic =const. on S, (124)

In particular, for the global compliance design, when G, coincides with the global potential
energy I1, and thus ®(¢) = U(e), the condition (124) becomes

U = —JAc =const. on S, (125)
The sufficient optimality conditions for that case of design were derived in[2, 3). They
require the specific strain energy to be constant on S; and a decreasing function along the
exterior normal to the boundary.

When only variation of supported boundary is considered, the optimality conditions
for the objective functional G, (87), in view of (95), become

f{[¢+h b (Tu), = 2f+T - u)H —a - €+ o,

+T- u,k}a(pk dS,, = —Ac '[nk6¢k dS,, (126)

For the case of mean compliance design, when G, coincides with the global potential
energy I1,, the local optimality condition for rigid support on S, follows directly from
(126), namely

U-T-u,,= —Ac =const. on S,. (127)

For the variation of the interface S,, in view of (103) and (105), the optimality conditions
are

[®]+[r])+ T [u,] — [ou]ets + [f] - w* = —A(c; — c) = const. on S,

(128)
8A(C = Cy) =0,
and
[#]+[A] + T - [w.] — [owles + [f] - w"= — (e, — ¢;) = const. on S,,
8A(C - C)) =0, (12

where ¢, and ¢, denote specific costs of the portions ¥, and ¥,, so that

oC =(c, — cz)jnkégo,‘ ds.. (130)
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For the case of mean compliance design, when G, coincides with the complementary energy
I1, and G,—with potential energy I1,, the conditions (128) and (129) become

lowJew—[W] - [f] uw=4(c, — c;) = const. on §,, (131

and

[U]-[f]-u—T[u,] = —4(c, — ¢;) = const. on .. (132)

The equivalence of (131) and (132) follows from the equality

W]+ U] =[o - €] = [ou]eu + oufeal. (133)

valid fork,/=1,2,i =1, 2,3 and n = 3, where k, /, n is the local coordinate system with
k, l-axes lying in the plane tangential to S..

The application of the optimality condition (131) in optimal design of stepped plates
was presented in[4].

5. EXAMPLES

In this Section, two simple examples of application of the derived optimality conditions
are presented. Further examples can be found in previous works[3-5].

Example 1. Prismatic bar under torsion and bending

Consider a prismatic bar of elliptic cross-section, subjected to combined torsion and
bending by the moments M, and M, Fig. 3(a). We shall look for an optimal cross sectional
shape within the class of elliptic shapes of specified cross-section area A, and for the stress
constraint

o, = [0';; + 3(“?3 + a%J)]m S o, (134)
where 0,3, 65 and oy, are the non-vanishing shear and normal stress components within
the bar, refered to the coordinate system (x;, x;, x;). These components are expressed as

follows in terms of the bending and torsional moments

2M M
0'33=E£%x2, a,,:-—;;b;-xz, 0'23=‘1E’E§°é‘x)- (x35)

Instead of the condition (134), we shall minimize the functional

g

0

m 2 2 2 yymj2
G = j’ (;) aa =IBF XL BT 4y oy, (136)

(BOel 0

0.8

a5

123

a) b}
Fig. 3. Prismatic bar under torsion and bending; (a) Bar subjected to combined torsion and bending
by the moments M, and M,, (b) Distribution of the effective stress o, along the cross-sectional
perimeter (M /M,=1, v =0.3).
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subject to the constraint

na,a, = A, = const. (137)
Let us note that for m—co the functional G, represents the local effective stress defined

by (134). The shape variation now depends on two parameters g, and g, and the
stationarity condition (120) now takes the form

j('l’ -0 €%d0¢,dS, = Ac j.&p,, ds,, (138)
where
o \"
V= (;o) R (139)
and the initial strains within the adjoint system are
€ a_qj_ ﬁa”"‘zo E _._?‘—. 3m -2
n= 6033 = ao 3% B= 66;3 = aom [ 13s
oV 3Im
o o e g2
€2 v aan 60,,, O, 013, (]40)

The variation of the cross-sectional shape occurs due to variation of its semiaxes ¢, and
a,, thus

aa, (141)

In view of (140) and (141), the stationarity condition (138) takes the form

(m——l)j‘( )“‘ﬁ]ng—lC'( n)dSo,

(m - I)J(a ) == dSo Ac J"'" n, dSo, (142)
0,

4o
aia, = '-;c— =-const.

The optimal values of a, and a, are calculated from (142)

[4, [ATM,Y Ay
= [22 4 (L) 41, q=-2 143
n 3\ M, thoa na, (143)

Figure 3(b) presents the distribution of the effective stress along the cross-section perimeter
(curve 1). It is seen that o, is constant for the shape specified by (143).

Consider now the mean stiffness design for which the complementary energy is
minimized

I,a,0)= J W(o) dA ~min,, (144)
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The optimal values of q;, and g, now are

Ao 2 Mb 2 Ao
= [20 4 e =20
% \/ n \/ 1+v (M,) thoa na, (143)

Curve 3 in Fig. 3(b) represents the distribution of o, along the boundary for the design
specified by (145). It is seen that o, does vary significantly. On the other, for a circular
cross section of the same area the variation of o, is quite considerable, (curve 2 in Fig.
3b).

Example 2. Design of annular disk

Consider a circular disk of radius r, with a central of radius r, loaded uniformly by
pressures p, and p,, Fig. 4(a). Consider the mean compliance design for which both radii
r; and r, are to be determined such that the complementary energy

= -215 ‘ (6} —2va,0,+ a2)rdr (146)
i

n
attains a minimum subject to the condition of constant material cost
C=cen(r}—r)=C, (147)
where 0, and g, are radial and circumferential stresses, and E, v denote the elastic constants.
The optimality conditions in the case of pressure loaded boundary follows from (57) and
have the form[5]
6 e—W—divipuy=4i, C=C, (148)

which in our case become

(0, +p)—201—v)p?=2icE forr=r,

(149)
(6, +p)—-201 —v)p2=2cE forr=r,
The stress state within the disk is expressed as follows
A A
0’,=—2'+B, 0',=——2+B, (150)
r r
%) !
-0 -0
1@ @
e
0 -
]

al b)
Fig. 4. Design of annular disk; (a) Disk loaded uniformly by pressures p, and p,, (b) Variation of
r/r, in function of p/p,.
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where
rizrrz priz'_prrez
A=3"n(p=p) B =—'—'—""”ir¢z_r} : (151)
Substituting (150) into (149), and solving for r, r,, we obtain
1 G (3=v)p.—(1+v)p, 1 [C,(3—v)p,~(T+)p.
=5 [— , =g [2 , (152)
2y ne Pi—Pe 2y me pi= P
valid for
pj 3 -V
—-< .
I< p. l+v (153)

Figure 4(b) presents the variation of r/r, in function of p/p,. It is seen that for p,/p, < 1
the optimal solution corresponds to the vanishing hole, whereas for p,/p, varying within
the range corresponding to the inequality (153) the disk is gradually transformed from a
thin ring into a circular disk without the hole.

6. CONCLUDING REMARKS

The present work is supplementary to Ref. [1] and provides a systematic variational
approach to sensitivity analysis and optimal design of a structure with shape variations
of its boundaries. It summarizes and extends previous results obtained in[1-5). The
analysis is limited to linearly elastic structures for which the concept of an adjoint structure
can easily be applied in order to derive the expression for first variation of any volume
or surface integral.

Besides optimal design or identification problems the present approach can also be
applied in study of fracture problems, metallurgical transformations, grain boundary
movements or growth process of biological materials. In these cases the transformation
field @(x) is specified by a growth or transformation rule, relating the rate of growth to
mechanical or chemical state parameters. This new and unexplored areas of structure
transformation will be discussed in more detail in future papers from the point of view
of sensitivity analysis and optimality conditions.
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APPENDIX A
Material derivatives on 2 surface element

In order to make our paper sensibly self-contained, we present briefly the derivation of material rates of
nommal and tangential tractions and forces acting on the surface element undergoing transformation. The
variations used in the paper can thus be identified with material rates. A systematic discussion of material rates
of surface data was recently presented by Hill[12].

(1) Material rate of a normal unil vector 1o the surface. Consider a material surface element in motion
associated with transformation

Six, =0, (Al
Then, the material derivative of (Al) is
St= %’ +fv=0 A2

where ¢ = v denotes the transformation velocity vector on the surface, and f= 8 %/0x is the gradient of surface
(Al). The material derivative of f is expressed similarly

2 2
However, from (A2) it follows that
2 2
g;g+;;§;u,+%%=o. (Ad)
In view of (A3) and (A4), we have
fi= “'gggvi = =iy
or
f= —LTf (A3)
where L, =v,,= ¢, and LT =L, is transposc velocity gradient matrix.
The unit normal vector to the surface (Al) is expressed as follows
n= (—r—%ﬁ = ; (A6)
and in view of {(A5) its rate equals
ﬁgif..!..fan-L’-n+(n'LT'n)n (A7)
S on
and finally
a=@mLaa~Ln=nnDn)+wn-Dn (A8)
where
=L+L", Zo=L-LT (A9}
are the associated strain and rotation rates.
Equation (A8) can be written in an alternative form
iy = (g = S M. (A10)

(2) Material rate of a tangential unit vector on the surface. Consider now any curve I' lying on the surface
(A1), given in the form

X =x(t) {(All)
where 7 is a parameter specifying ™. The vector tangential to this curve can be expressed as follows

dx

X, ® —
" dr

(Al2)
and its rate equals

X" g4 = iyx;'u
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or
%, =L-x, (A13)

where, as previously, L; = v, = ¢,
The unit tangential vector to the curve (Al1l) is now expressed as follows

x" x“‘

t= o x)? = x. (Al4)
and in view of (A13), its rate cquals
i=_l~,""_.i"2x,,=L°t—(t-L't)t. (A15)
X, X,
Thus, finally we can write
t=Lt—(t'L-)t=D-t+w-t—tt-D-t) (A16)
where D and o are defined by eqn (A9). The alternative form of (A16) is
6= Bx = 140, ;. (A17)

Since eqn (A11) describes any curve lying on the surface (Al), then relation (A16) or (A17) defines the material
rate of any unit vector t being tangential to the surface (Al).
(3) Material rate of the surface element area. For any material line clement dx on the surface S (Al) there
is
d'x=L-dx or dx=Lgdyx (A18)

Consider two infinitesimal material elements dx' and dx2 The vector of surface element area is then, see
Fig. Al

dS=dx' x dx’=ndS or dS;=eudx)dx? (A19)
where y denotes the vector product and n is the unit normal vector to S; dS is the area of surface element and

ey denotes the permutation symbol.
Equation (A19) can be now expressed as follows

1
ds, = 5 ep(dx/ dx)’ — dx)' dx}) (A20)

and in view of (A18) its material rate is
1

ds, =
A 3

1
Ly dxit = i de,]) + 5 e L} - dr, | d), (A21)

Multiplying now eqn (A13) be e, it is obtained
EpidS; = dx,'dx,} — dx, dx,2. (A22)
Using this relation in (A21), the material rate of surface element vector can be expressed as follows
dS, = L,,dS,— L,dS,
or
dS = (divv}dS —L7-dS (A23)
that can be written alternatively as
dS; = (e — np,)dS (A249)
Calculating now the material derivative of the first equality of (A19), we can write
dS =dSn+dsh (A25)
in view of (A8), (A19) and (A23), we obtain
(divv)dSn=dS n+(a-L-n)dSn. (A26)
Thus, the material rate of clement area equals

dS =(divv—n-L-n)dS (A27)
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or alternatively

dS = (v — nppp) dSs. (A28)
(4) Material rate of surface tractions. Consider the surface traction being permanently normal to the loaded

surface, for which intensity factor equals p. The normal stress vector at any point P of boundary surface can
be expressed as follows

a,=pn (A29)
and the normal force vector acting on surface element dS takes the form
R,=0,dS=pndS=pdS. (A30)
To calculate the material rate of stress vector a,, in view of (A29), we can write
G,=pn+ph (A3l)

Using now (A8) and (A29) in (A31), the material rate of normal stress vector ¢, is expressed in the form

a',,=(n'L-n)a,—L7'c,+£a,, (A32)
or, in view of (A9), as
a',,=(n-D-n)a,,+w'a,,—D'a,+§c,,. (A33)
Similarly, it follows from (A30)
R,=pdS+pdS (A34)

and by using (A23), the material rate of normal force vector R, is expressed in the form
R,=(divvR,~L™R, +§ R, (A35)

In a Cartesian reference system, the relations (A33) and (A35) can be expressed in a matrix form

{0} = (a/00i 1,0 {0, } + a0y} (A36)
and

{R,} =(Afoe)){R,} + 2 {R,}. A3
A quite different kind of loading occurs in the case of tangential follower force. Here, the local traction is

tangential to an embedded fibre element of the surface. In this case, the tangential stress vector at any point P
of the loaded surface can be expressed in the form

o,=qt (A38)

where t denotes unit tangential vector on S and ¢ is intensity factor of tangential force. In view of (A16), the
material rate of (A38) is expressed as follows

a',=L-q,-(t'L-t)c,+§c, (A39)
or, in view of (A9), it takes the form
é6,=D'6,+w 'a,—(t'D'tk,+§c,. (A40)
The tangential force vector is defined by
R, = qtdS =,dS (A41)

and in view of (A16) and (A27), its material rate equals
R,=L‘R,—(t-L-t+n-L-n)R, +(div v)l,+-ZR,. (A42)

In the Cartesian system (x,, x,, X;), these rates are expressed in the matrix form

{0} = (by(vws Mo, } + Blo,} (A43)
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and
{RI,} = [Bv(vhl; ”; nr)] {RI,} + p {Rn}' (AM)
Let us note, that for both of considered loadings their material rates are the sum of two parts—the first part

being the controllable part independent of material response and the second one being the transformation-
sensitive part depending linearly on the velocity gradient.

APPENDIX B

Proof of the conservation rule (112) for an arbitrary stress functional
Consider the integral (112), that is

Z,= Iw(ﬁm»u + 0 [y — Oyt IAS (B1)

specified on any closed surface S within the homogeneous body. Here ¥(g,,,) is an arbitrary scalar stress function
possessing uniquely defined gradient 8 ¥ /do,,,. The adjoint body is specified by (76)«(79) with g =f=h = 0.
The stress field within the adjoint body is ¢} whereas uf is the displacement field. In view of (77) and (78) the
initial strain field within the adjoint body is

¥
c},°=;’:v, =+ (B2)

and ¢} is the residual stress field induced by the initial strain field €;.
Transform the surface integral (B1) into the volume integral

Z= I[w‘k + (a:j“nk)oj - (ay'vkuia)vj] dv,
aw r r a a
=3 O + Ot + O oy — (0o )t — G il 1AV,
]
iz
= J.[a—a- Ok + Oy — ay,,,c;] dav, (B3)
[
where V, is the volume of the domain enclosed by the surface S. In (B3) the second and the fourth terms vanish

by virtue of equilibrium conditions for stress fields o, and o, that is 6,,; = &, = 0. in view of (B2), the expression
(B3) is further retransformed as follows

4= J. leiogn+ Ol — €0 — €0l AV, = J.[a Hn — €l AV, (B4)

For a homogeneous body, there is

it = D o
k€5 = (D Cmadot €5 = Dipmn Emari€ § = D yun € st (BS)
since the stiffness matrix does not vary with position Dy, = 0. Thus ¢, — €[5, = 0, and
Z;=0 (B6)

for any closed surface S within the body considered.
Consider the stress functional

G, = J‘W(u‘,) av. (87

Since 6G, = Z,da, for the translation of any closed surface, the stress functional G, preserves constant value
during translation of the body.



